CATALYTIC FIXATION OF CARBON DIOXIDE TO FORMIC ACID BY TRANSITION-METAL COMPLEXES UNDER MILD CONDITIONS

Yoshio INOUE, Hitoshi IZUMIDA, Yoshiyuki SASAKI, and Harukichi HASHIMOTO

Department of Applied Chemistry, Faculty of Engineering, Tohoku University, Aramaki Sendai-shi 980

Formic acid was catalytically synthesized from carbon dioxide and hydrogen by a combination of group VIII transition-metal complexes and bases in the presence of water far less than the equivalent amount of the catalyst.

It is known that ${\rm CO}_2$ is reduced electrochemically to formic acid in aqueous solution, but the synthesis of formic acid directly from ${\rm CO}_2$ and ${\rm H}_2$ has not been reported except for the recent work on the catalytic formation of magnesium formate from ${\rm H}_2$ and ${\rm CO}_2$ by a ${\rm TiCl}_4$ -Mg system. We have previously reported the synthesis of alkyl formates from ${\rm CO}_2$, ${\rm H}_2$, and primary alcohols by a combination of group VIII transition-metal complexes and tertiary amines. 2

We now wish to report the catalytic formation of formic acid from ${\rm CO}_2$ and ${\rm H}_2$ in the presence of water under mild conditions by a combination of group VIII transition-metal complexes and some bases.

$$CO_2 + H_2 \xrightarrow{Base, H_2O} HCO_2H$$

Typically, a 100 ml stainless steel autoclave equipped with a magnetic stirrer was charged with Pd(diphos), 0.1 mmol[diphos=Ph2PCH2CH2PPh2], benzene 10 ml, water 500 mmol, and triethylamine 50 mmol, then the mixture was stirred constantly at room temperature under pressure of $CO_2(25 \text{ atm})$ and $H_2(25 \text{ atm})$. After reaction for 20 hr, the formic acid yielded was quantitatively analyzed by NMR using disodium telephthalate as an internal standard. Table 1 shows the catalytic formation of formic acid from CO, and H₂ in the presence of water. Complexes of most group VIII transition-metals can be used as the catalyst component. As shown in Fig. 1, a very small quantity of water is effective enough to accelerate the reaction.

Complex	Base	Temp.	<pre>HCO₂H Yield (mol/mol complex)</pre>
Pd(diphos) ₂	None	r.t.	0
	Trimethylamine	r.t.	12
	Triethylamine	r.t.	12
		66	40
		110	62
		140	70
		160	50
	Tripropylamine	r.t.	14
	N-Methylpyrrolidine	r.t.	12
	1,4-Diazabicyclo[2.2.2]octane	r.t.	24
	Dipropylamine	r.t.	7
	Tetramethylammonium hydroxide ^{b)}	r.t.	5
	Sodium hydroxide	r.t.	11
	Sodium hydrogencarbonate ^{c)}	r.t.	3
Ni(diphos) ₂	Triethylamine	r.t.	7
Pd(PPh ₃) ₄	Triethylamine	r.t.	3
RhCl (PPh ₃) ₃	Triethylamine	r.t.	22
H ₂ Ru (PPh ₃) ₄	Triethylamine	r.t.	87
H ₃ Ir(PPh ₃) ₃	Triethylamine	r.t.	15

Table 1 Catalytic formation of formic acida)

a) Any other organic products were not detected by GLC and NMR analyses. Reaction conditions: complex 0.1 mmol, base 50 mmol, water 500 mmol, benzene 10 ml, $\rm CO_2$ 25 atm, $\rm H_2$ 25 atm; reaction time 20 hr. b) Tetramethylammonium hydroxide 27.5 mmol, water 1250 mmol. c) Without $\rm CO_2$.

Although the mechanism for this reaction is not fully understood the following may be a possible one. $^{3)}$

LnM-H + CO₂
$$\longrightarrow$$
 LnMOCH $\xrightarrow{\text{H}_2\text{O}(\text{Base})}$ LnMOH + HOCH $\overset{\circ}{\text{O}}$ $\overset{\circ}{\text{O}}$ $\overset{\circ}{\text{O}}$

In the sodium hydrogenearbonate system, however, formic acid was obtained in some yields even in the absence of ${\rm CO}_2$. Therefore, the following route via hydrogenearbonate cannot be excluded at the moment.

$$CO_2 + H_2O + NR_3 \xrightarrow{H_2} HOCONHR_3 \xrightarrow{H_2} HOCH + HONHR_3 (or H_2O + HCONHR_3)$$

Controlled experiments ruled out the route that CO₂ was reduced to carbon monoxide which in turn reacted with the water to form formic acid.

We thank the Ministry of Education, Japan, for partial support (No 011006).

References

- B. Jezowska-Trzebiatowska and P. Sobota, J. Organometal. Chem., <u>76</u>, 43 (1974).
 idem, ibid., <u>80</u>, C27 (1974).
- 2) Y. Inoue, Y. Sasaki, and H. Hashimoto, J. C. S. Chem. Comm., 718 (1975).
- 3) Intermediate formation of formic acid is supposed in the preparation of RhCl(CO)(PPh $_3$) $_2$ from RhCl(PPh $_3$) $_3$, H $_2$, and CO $_2$ in the presence of water; H. Koinuma, Y. Yoshida, and H. Hirai, Chem. Lett., 1223 (1975).